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Abstract

Recent approaches have shown promises distilling expensive diffusion models into
efficient one-step generators. Amongst them, Distribution Matching Distillation
(DMD) produces one-step generators that match their teacher in distribution, i.e.,
the distillation process does not enforce a one-to-one correspondence with the
sampling trajectories of their teachers. However, to ensure stable training in
practice, DMD requires an additional regression loss computed using a large set
of noise–image pairs, generated by the teacher with many steps of a deterministic
sampler. This is not only computationally expensive for large-scale text-to-image
synthesis, but it also limits the student’s quality, tying it too closely to the teacher’s
original sampling paths. We introduce DMD2, a set of techniques that lift this
limitation and improve DMD training. First, we eliminate the regression loss and
the need for expensive dataset construction. We show that the resulting instability
is due to the “fake” critic not estimating the distribution of generated samples with
sufficient accuracy and propose a two time-scale update rule as a remedy. Second,
we integrate a GAN loss into the distillation procedure, discriminating between
generated samples and real images. This lets us train the student model on real
data, thus mitigating the imperfect “real” score estimation from the teacher model,
and thereby enhancing quality. Third, we introduce a new training procedure that
enables multi-step sampling in the student, and addresses the training–inference
input mismatch of previous work, by simulating inference-time generator samples
during training. Taken together, our improvements set new benchmarks in one-
step image generation, with FID scores of 1.28 on ImageNet-64×64 and 8.35 on
zero-shot COCO 2014, surpassing the original teacher despite a 500× reduction
in inference cost. Further, we show our approach can generate megapixel images
by distilling SDXL, demonstrating exceptional visual quality among few-step
methods, and surpassing the teacher. We release our code and pretrained models.

1 Introduction

Diffusion models have achieved unprecedented quality in visual generation tasks [1–8]. But their
sampling procedure typically requires dozens of iterative denoising steps, each of which is a forward
pass through a neural network. This makes high resolution text-to-image synthesis slow and expensive.
To address this issue, numerous distillation methods have been developed to convert a teacher diffusion
model into an efficient, few-step student generator [9–20]. However, they often result in degraded
quality, as the student model is typically trained with a loss to learn the pairwise noise-to-image
mapping of the teacher, but struggles to perfectly mimic its behavior.
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Figure 1: 1024×1024 samples produced by our 4-step generator distilled from SDXL. Please zoom
in for details.

Nevertheless, it should be noted that loss functions aimed at matching distributions, such as the
GAN [21] or the DMD [22] loss, are not burdened with the complexity of precisely learning the
specific paths from noise to image because their goal is to align with the teacher model in terms of
distribution—by minimizing either a Jensen-Shannon (JS) or an approximate Kullback-Leibler (KL)
divergence between the student and teacher output distributions.

In particular, DMD [22] has demonstrated state-of-the-art results in distilling Stable Diffusion 1.5,
yet it remains less investigated than GAN-based methods [23–29]. A likely reason is that DMD still
requires an additional regression loss to ensure stable training. In turn, this necessitates creating
millions of noise-image pairs by running the full sampling steps of the teacher model, which is
particularly costly for text-to-image synthesis. The regression loss also negates the key benefit
of DMD’s unpaired distribution matching objective, because it causes the student’s quality to be
upper-bounded by the teacher’s.

In this paper, we show how to do away with DMD’s regression loss, without compromising training
stability. We then push the limits of distribution matching by integrating the GAN framework into
DMD, and enable few-steps sampling with a novel training procedure, which we termed ‘backward
simulation’. Taken together, our contributions lead to state-of-the-art fast generative models that
outperform their teacher, using as few as 4 sampling steps. Our method, which we call DMD2,
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achieves state-of-the-art results in one-step image generation, setting a new benchmark with FID
scores of 1.28 on ImageNet-64×64 and 8.35 on zero-shot COCO 2014. We demonstrate our approach’s
scalability by distilling from SDXL to produce high-quality megapixel images, establishing new
standards among few-step methods.

In short, our contributions are as follows:

• We propose a new distribution matching distillation technique that does not require a
regression loss for stable training, thereby eliminating the need for costly data collection,
and allowing for more flexible and scalable training.

• We show that training instability in DMD [22] without regression loss stems from an
insufficiently trained fake diffusion critic, and implement a two time-scale update rule to
address this issue.

• We integrate a GAN objective into the DMD framework, where the discriminator is trained to
distinguish samples from the student generator vs. real images. This additional supervision
operates at the distribution level, which better aligns with DMD’s distribution-matching
philosophy than the original regression loss. It mitigates approximation errors in the teacher
diffusion model and enhances image quality.

• While the original DMD only supports one-step students, we introduce a technique to
support multi-step generators. Unlike previous multi-step distillation methods, we avoid the
domain mismatch between training and inference by simulating inference-time generator
inputs during training, thus improving overall performance.

2 Related Work

Diffusion Distillation. Recent diffusion acceleration techniques have focused on speeding up the
generation process through distillation [9, 10, 13–20, 22, 23, 30]. They typically train a generator
to approximate the ordinary differential equation (ODE) sampling trajectory of a teacher model,
in fewer sampling steps. Notably, Luhman et al. [16] precompute a dataset of noise and images
pairs, generated by the teacher using an ODE sampler, and use it to train the student to regress
the mapping in a single network evaluation. Follow-up works like Progressive Distillation [10, 13]
eliminate the need to precompute this paired dataset offline. They iteratively train a sequence of
student models, each halving the number of sampling steps of its predecessor. A complementary
technique, Instaflow [11] straightens the ODE trajectories, so they are easier to approximate with a
one-step student. Consistency Distillation [9,12,19,26,31,32], and TRACT [33], train student models
so their outputs are self-consistent at any timesteps along the ODE trajectory, and thus consistent
with the teacher.

GANs. Another line of research employs adversarial training to align the student with the teacher at a
broader distribution level. In ADD [23], the generator, initialized with weights from a diffusion model,
is trained using a projected GAN objective with an image-space classifier [34]. Building on this,
LADD [24] utilizes a pre-trained diffusion model as the discriminator and operates in latent space, thus
improving scalability and enabling higher-resolution synthesis. Inspired by DiffusionGAN [28, 29],
UFOGen [25] introduces noise injection prior to the real vs. fake classification in the discriminator, to
smooth out the distributions, which stabilizes the training dynamics. A few recent approaches combine
adversarial objectives with a distillation loss that preserves the original sampling trajectory. For
instance, SDXL-Lightning [27] integrates a DiffusionGAN loss [25] with a progressive distillation
objective [10, 13], while the Consistency Trajectory Model [26] combines a GAN [35] with an
improved consistency distillation [9].

Score Distillation was initially introduced in the context of text-to-3D synthesis [36–39], utilizing a
pre-trained text-to-image diffusion model as a distribution matching loss. These methods optimize a
3D object by aligning rendered views with a text-conditioned image distribution, using the scores
predicted by a pretrained diffusion model. Recent works have extended score distillation [36, 37,
40–42] to diffusion distillation [22, 43–45]. Notably, DMD [22] minimizes an approximate KL
divergence, with its gradient represented as the difference between two score functions: one, fixed
and pretrained, for the target distribution and another, trained dynamically, for the output distribution
of the generator.
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Figure 2: 1024×1024 samples produced by our 4-step generator distilled from SDXL. Please zoom
in for details.
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DMD parameterizes both score functions using diffusion models. This training objective proved
more stable than GAN-based methods and has demonstrated superior performance in one-step
image synthesis. An important caveat, DMD requires a regression loss for stability, calculated
using precomputed noise-image pairs, similar to Luhman et al. [16]. Our work does away with
this requirement. We introduce techniques to stabilize the DMD training procedure without the
regression regularizer, thus significantly reducing the computational costs incurred by paired data
precomputation. Furthermore, we extend DMD to support multi-step generation and integrate the
strengths of both GANs and distribution matching approaches [22, 44, 45], leading to state-of-the-art
results in text-to-image synthesis.

3 Background: Diffusion and Distribution Matching Distillation

This section gives a brief overview of diffusion models and distribution matching distillation (DMD).

Diffusion Models generate images through iterative denoising. In the forward diffusion process, noise
is progressively added to corrupt a sample x ∼ preal from the data distribution into pure Gaussian
noise over a predetermined number of steps T , so that, at each timestep t, the diffused samples follow
the distribution preal,t(xt) =

∫
preal(x)q(xt|x)dx, with qt(xt|x) ∼ N (αtx, σ

2
t I), where αt, σt > 0

are scalars determined by the noise schedule [46, 47]. The diffusion model learns to iteratively
reverse the corruption process by predicting a denoised estimate µ(xt, t), conditioned on the current
noisy sample xt and the timestep t, ultimately leading to an image from the data distribution preal.
After training, the denoised estimate relates to the gradient of the data likelihood function, or score
function [47] of the diffused distribution:

sreal(xt, t) = ∇xt log preal,t(xt) = −xt − αtµreal(xt, t)

σ2
t

. (1)

Sampling an image typically requires dozens to hundreds of denoising steps [48–51].

Distribution Matching Distillation (DMD) distills a many-step diffusion models into a one-step
generator G [22] by minimizing the expectation over t of approximate Kullback-Liebler (KL) diver-
gences between the diffused target distribution preal,t and the diffused generator output distribution
pfake,t. Since DMD trains G by gradient descent, it only requires the gradient of this loss, which can
be computed as the difference of 2 score functions:

∇LDMD = Et (∇θKL(pfake,t∥preal,t)) = −Et

(∫ (
sreal(F (Gθ(z), t), t)− sfake(F (Gθ(z), t), t)

)dGθ(z)

dθ
dz

)
,

(2)
where z ∼ N (0, I) is a random Gaussian noise input, θ are the generator parameters, F is the forward
diffusion process (i.e., noise injection) with noise level corresponding to time step t, and sreal and sfake
are scores approximated using diffusion models µreal and µfake trained on their respective distributions
(Eq. (1)). DMD uses a frozen pre-trained diffusion model as µreal (the teacher), and dynamically
updates µfake while training G, using a denoising score-matching loss on samples from the one-step
generator, i.e., fake data [22, 46].

Yin et al. [22] found that an additional regression term [16] was needed to regularize the distribution
matching gradient (Eq. (2)) and achieve high-quality one-step models. For this, they collect a dataset
of noise-image pairs (z, y) where the image y is generated using the teacher diffusion model, and a
deterministic sampler [48, 49, 52], starting from the noise map z. Given the same input noise z, the
regression loss compares the generator output with the teacher’s prediction:

Lreg = E(z,y)d(Gθ(z), y), (3)

where d is a distance function, such as LPIPS [53] in their implementation. While gathering this
data incurs negligible cost for small datasets like CIFAR-10, it becomes a significant bottleneck with
large-scale text-to-image synthesis tasks, or models with complex conditioning [54–56]. For instance,
generating one noise-image pair for SDXL [57] takes around 5 seconds, amounting to about 700
A100 days to cover the 12 million prompts in the LAION 6.0 dataset [58], as utilized by Yin et
al. [22]. This dataset construction cost alone is already more than 4× our total training compute (as
detailed in Appendix F). This regularization objective is also at odds with DMD’s goal of matching
the student and teacher in distribution, since it encourages adherence to the teacher’s sampling paths.
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4 Improved Distribution Matching Distillation

We revisit multiple design choices in the DMD algorithm [22] and identify significant improvements.

few-step generator

diffusion

diffusion

discriminator

real
score function

input

diffusion
loss

GAN loss

computed gradient

fake image

distribution matching
gradient

fake score

real score

fake
score function

real image

Figure 3: Our method distills a costly diffusion model (gray, right) into a one- or multi-step generator
(red, left). Our training alternates between 2 steps: 1. optimizing the generator using the gradient
of an implicit distribution matching objective (red arrow) and a GAN loss (green), and 2. training a
score function (blue) to model the distribution of “fake” samples produced by the generator, as well
as a GAN discriminator (green) to discriminate between fake samples and real images. The student
generator can be a one-step or a multi-step model, as shown here, with an intermediate step input.

4.1 Removing the regression loss: true distribution matching and easier large-scale training

The regression loss [16] used in DMD [22] ensures mode coverage and training stability, but as
we discussed in Section 3, it makes large-scale distillation cumbersome, and is at odds with the
distribution matching idea, thus inherently limiting the performance of the distilled generator to that
of the teacher model. Our first improvement is to remove this loss.

4.2 Stabilizing pure distribution matching with a Two Time-scale Update Rule

Naively omitting the regression objective, shown in Eq. (3), from DMD leads to training instabilities
and significantly degrades quality (Tab. 3). For example, we observed that the average brightness,
along with other statistics, of generated samples fluctuates significantly, without converging to a stable
point (See Appendix C). We attribute this instability to approximation errors in the fake diffusion
model µfake, which does not track the fake score accurately, since it is dynamically optimized on
the non-stationary output distribution of the generator. This causes approximation errors and biased
generator gradients (as also discussed in [30]).

We address this using the two time-scale update rule inspired by Heusel et al. [59]. Specifically,
we train µfake and the generator G at different frequencies to ensure that µfake accurately tracks the
generator’s output distribution. We find that using 5 fake score updates per generator update, without
the regression loss, provides good stability and matches the quality of the original DMD on ImageNet
(Tab. 3) while achieving much faster convergence. Further analysis are included in Appendix C.

4.3 Surpassing the teacher model using a GAN loss and real data

Our model so far achieves comparable training stability and performance to DMD [22] without the
need for costly dataset construction (Tab. 3). However, a performance gap remains between the
distilled generator and the teacher diffusion model. We hypothesize this gap could be attributed to
approximation errors in the real score function µreal used in DMD, which would propagate to the
generator and lead to suboptimal results. Since DMD’s distilled model is never trained with real data,
it cannot recover from these errors.

We address this issue by incorporating an additional GAN objective into our pipeline, where the
discriminator is trained to distinguish between real images and images produced by our generator.
Trained using real data, the GAN classifier does not suffer from the teacher’s limitation, potentially
allowing our student generator to surpass it in sample quality. Our integration of a GAN classifier
into DMD follows a minimalist design: we add a classification branch on top of the bottleneck of the
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fake diffusion denoiser (see Fig. 3). The classification branch and upstream encoder features in the
UNet are trained by maximizing the standard non-saturing GAN objective:

LGAN = Ex∼preal,t∼[0,T ][logD(F (x, t))] + Ez∼pnoise,t∼[0,T ][− log(D(F (Gθ(z), t)))], (4)

where D is the discriminator, and F is the forward diffusion process (i.e., noise injection) defined in
Section 3, with noise level corresponding to time step t. The generator G minimizes this objective.
Our design is inspired by prior works that use diffusion models as discriminators [24, 25, 27]. We
note that this GAN objective is more consistent with the distribution matching philosophy since it
does not require paired data, and is independent of the teacher’s sampling trajectories.

4.4 Multi-step generator

With the proposed improvements, we are able to match the performance of teacher diffusion models
on ImageNet and COCO (see Tab. 1 and Tab. 5). However, we found that larger scale models like
SDXL [57] remain challenging to distill into a one-step generator because of limited model capacity
and a complex optimization landscape to learn the direct mapping from noise to highly diverse and
detailed images. This motivated us to extend DMD to support multi-step sampling.

We fix a predetermined schedule with N timestep {t1, t2, . . . tN}, identical during training and
inference. During inference, at each step, we alternate between denoising and noise injection steps,
following the consistency model [9], to improve sample quality. Specifically, starting from Gaussian
noise z0 ∼ N (0, I), we alternate between denoising updates x̂ti = Gθ(xti , ti), and forward diffusion
steps xti+1 = αti+1 x̂ti + σti+1ϵ with ϵ ∼ N (0, I), until we obtain our final image x̂tN . Our 4-step
model uses the following schedule: 999, 749, 499, 249, for a teacher model trained with 1000 steps.

4.5 Multi-step generator simulation to avoid training/inference mismatch

Previous multi-step generators are typically trained to denoise noisy real images [23,24,27]. However,
during inference, except for the first step, which starts from pure noise, the generator’s input come
from a previous generator sampling step x̂ti . This creates a training-inference mismatch that adversely
impacts quality (Fig. 4). We address this issue by replacing the noisy real images during training,
with noisy synthetic images xti produced by the current student generator running several steps,
similar to our inference pipeline (§ 4.4). This is tractable because, unlike the teacher diffusion model,
our generator only runs for a few steps. Our generator then denoises these simulated images and the
outputs are supervised with the proposed loss functions. Using noisy synthetic images avoids the
mismatch and improves overall performance (See Sec. 5.3).

forward diffusion:  train/test domain gapreal image backward simulation: train/test alignment“fake” sample

Figure 4: Most multi-step distillation methods simulate intermediate steps using forward diffusion
during training (left). This creates a mismatch with the inputs the model sees during inference. Our
proposed solution (right) remedies the problem by simulating the inference-time backward process
during training.

A concurrent work, Imagine Flash [60], proposed a similar technique. Their backward distillation
algorithm shares our motivation of reducing the training and testing gap by using the student-generated
images as the input to the subsequent sampling steps at training time. However, they do not entirely
resolve the mismatch issue, because the teacher model of the regression loss now suffers from the
training–test gap: it is never trained with synthetic images. This error is accumulated along the
sampling path. In contrast, our distribution matching loss is not dependent on the input to the student
model, alleviating this issue.

4.6 Putting everything together

In summary, our distillation method lifts DMD [22] stringent requirements for precomputed noise–
image pairs. It further integrates the strength of GANs and supports multi-step generators. As
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shown in Fig. 3, starting from a pretrained diffusion model, we alternate between optimizing the
generator Gθ to minimize the original distribution matching objective as well as a GAN objective,
and optimizing the fake score estimator µfake using both a denoising score matching objective on the
fake data, and the GAN classification loss. To ensure the fake score estimate is accurate and stable,
despite being optimized on-line, we update it with higher frequency than the generator (5 steps vs. 1).

5 Experiments

We evaluate our approach, DMD2, using several benchmarks, including class-conditional image
generation on ImageNet-64×64 [61], and text-to-image synthesis on COCO 2014 [62] with various
teacher models [1, 57]. We use the Fréchet Inception Distance (FID) [59] to measure image quality
and diversity, and the CLIP Score [63] to evaluate text-to-image alignment. For SDXL models,
we additionally report patch FID [27, 64], which measures FID on 299x center-cropped patches of
each image, to assess high-resolution details. Finally, we conduct human evaluations to compare
our approach with other state-of-the-art methods. Comprehensive evaluations confirm that distilled
models trained using our approach outperform previous work, and even rival the performance of the
teacher models. Detailed training and evaluation procedures are provided in the appendix.

5.1 Class-conditional Image Generation

Table 1 compares our model with recent baselines on ImageNet-64×64. With a single forward pass,
our method significantly outperforms existing distillation techniques and even outperforms the teacher
model using ODE sampler [52]. We attribute this remarkable performance to the removal of DMD’s
regression loss (Sec. 4.1 and 4.2), which eliminates the performance upper bound imposed by the
ODE sampler, as well as our additional GAN term (Sec. 4.3), which mitigates the adverse impact of
the teacher diffusion model’s score approximation error.

Table 1: Image quality comparison on
ImageNet-64×64.

Method # Fwd
Pass (↓)

FID
(↓)

BigGAN-deep [65] 1 4.06
ADM [66] 250 2.07
RIN [67] 1000 1.23
StyleGAN-XL [35] 1 1.52

Progress. Distill. [10] 1 15.39
DFNO [68] 1 7.83
BOOT [20] 1 16.30
TRACT [33] 1 7.43
Meng et al. [13] 1 7.54
Diff-Instruct [44] 1 5.57
Consistency Model [9] 1 6.20
iCT-deep [12] 1 3.25
CTM [26] 1 1.92
DMD [22] 1 2.62
DMD2 (Ours) 1 1.51
+longer training (Ours) 1 1.28

EDM (Teacher, ODE) [52] 511 2.32
EDM (Teacher, SDE) [52] 511 1.36

Table 2: Image quality comparison with SDXL back-
bone on 10K prompts from COCO 2014.

Method # Fwd
Pass (↓)

FID
(↓)

Patch
FID (↓)

CLIP
(↑)

LCM-SDXL [32] 1 81.62 154.40 0.275
4 22.16 33.92 0.317

SDXL-Turbo [23] 1 24.57 23.94 0.337
4 23.19 23.27 0.334

SDXL 1 23.92 31.65 0.316
Lightning [27] 4 24.46 24.56 0.323

DMD2 (Ours) 1 19.01 26.98 0.336
4 19.32 20.86 0.332

SDXL
Teacher, cfg=6 [57] 100 19.36 21.38 0.332

SDXL
Teacher, cfg=8 [57] 100 20.39 23.21 0.335

5.2 Text-to-Image Synthesis

We evaluate DMD2’s text-to-image generation performance on zero-shot COCO 2014 [62]. Our
generators are trained by distilling SDXL [57] and SD v1.5 [1], respectively, using a subset of 3
million prompts from LAION-Aesthetics [58]. Additionally, we collect 500k images from LAION-
Aesthetic as training data for the GAN discriminator. Table 2 summarizes distillation results for
the SDXL model. Our 4-step generator produces high quality and diverse samples, achieving
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a FID score of 19.32 and a CLIP score of 0.332, rivaling the teacher diffusion model for both
image quality and prompt coherence. To further verify our method’s effectiveness, we conduct an
extensive user study comparing our model’s output with those from the teacher model and existing
distillation methods. We use a subset of 128 prompts from PartiPrompts [69] following LADD [24].
For each comparison, we ask a random set of five evaluators to choose the image that is more
visually appealing, as well as the one that better represents the text prompt. Details about the human
evaluation are included in Appendix H. As shown in Figure 5, our model achieves much higher user
preferences than baseline approaches. Notably, our model outperforms its teacher in image quality
for 24% of samples and achieves comparable prompt alignment, while requiring 25× fewer forward
passes (4 vs 100). Qualitative comparisons are shown in Figure 6. Results for SDv1.5 are provided
in Table 5 in Appendix A. Similarly, one-step model trained using DMD2 outperforms all previous
diffusion acceleration approaches, achieving a FID score of 8.35, representing a significant 3.14-point
improvement over the original DMD method [22]. Our results also surpass the teacher models that
uses a 50-step PNDM sampler [49].

Figure 5: User study comparing our distilled model with its teacher and competing distillation
baselines [23, 27, 31]. All distilled models use 4 sampling steps, the teacher uses 50. Our model
achieves the best performance for both image quality and prompt alignment.

5.3 Ablation Studies

Table 3: Ablation studies on ImageNet.
TTUR stands for two-timescale update rule.

DMD No Regress. TTUR GAN FID (↓)

✓ 2.62
✓ ✓ 3.48
✓ ✓ ✓ 2.61
✓ ✓ ✓ ✓ 1.51

✓ 2.56
✓ ✓ 2.52

Table 4: Ablation studies with SDXL backbone on
10K prompts from COCO 2014.

Method FID (↓) Patch FID (↓) CLIP (↑)

w/o GAN 26.90 27.66 0.328
w/o Distribution
Matching 13.77 27.96 0.307

w/o Backward
Simulation 20.66 24.21 0.332

DMD2 (Ours) 19.32 20.86 0.332

Table 3 ablates different components of our proposed method on ImageNet. Simply removing the
ODE regression loss from the original DMD results in a degraded FID of 3.48 due to training
instability (see further analysis in Appendix C). However, incorporating our Two Time-scale Update
Rule (TTUR, Sec. 4.2) mitigates this performance drop, matching the DMD baseline performance
without requiring additional dataset construction. Adding our GAN loss achieves a further 1.1-
point improvement in FID. Our integrated approach surpasses the performance of using GAN alone
(without distribution matching objective), and adding the two-timescale update rule to GAN alone
does not improve it, highlighting the effectiveness of combining distribution matching with GANs in
a unified framework.

In Table 4, we ablate the influence of the GAN term (Sec. 4.3), distribution matching objective (Eq. 2),
and backward simulation (Sec. 4.4) for distilling the SDXL model into a four-step generator. Quali-
tative results are shown in Figure. 7. In the absence of the GAN loss, our baseline model produces
oversaturated and oversmoothed images (Fig. 7 third column). Similarly, eliminating distribution
matching objective (Eq. 2) reduces our approach to a pure GAN-based method, which struggles with
training stability [70, 71]. Moreover, pure GAN-based methods also lack a natural way to incorporate
classifier-free guidance [72], essential for high-quality text-to-image synthesis [1, 2]. Consequently,
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DMD2 (Ours) LCM

A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.

Turbo Lightning Teacher

a shiba inu wearing a beret and black turtleneck

a young girl playing piano 

A train ride in the monsoon rain in Kerala. With a Koala bear wearing a hat looking out of the window. There is a 
lot of coconut trees out of the window.

Figure 6: Visual comparison between our model, the SDXL teacher, and selected competing
methods [23, 27, 31]. All distilled models use 4 sampling steps while the teacher model uses 50
sampling steps with classifier-free guidance. All images are generated using identical noise and text
prompts. Our model produces images with superior realism and text alignment. (Zoom in for details.)
More comparisons are available in Appendix Figure 10.

while GAN-based methods achieve the lowest FID by closely matching the real distribution, they
significantly underperform in text alignment and aesthetic quality ( Fig. 7 second column). Likewise,
omitting the backward simulation leads to worse image quality, as indicated by the degraded patch
FID score.

6 Limitations

While achieving superior image quality and text alignment, our distilled generator experiences a
slight degradation in image diversity compared to the teacher models (see Appendix B). Additionally,
our generator still requires four steps to match the quality of the largest SDXL model. These
limitations, while not unique to our model, highlight areas for further improvement. Like most
previous distillation methods, we use a fixed guidance scale during training, limiting user flexibility.
Introducing a variable guidance scale [13, 31] could be a promising direction for future research.
Furthermore, our methods are optimized for distribution matching; incorporating human feedback
or other reward functions could further enhance performance [17, 73]. Lastly, training large-scale
generative models is computationally intensive, making it inaccessible for most researchers. We hope
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DMD2 (Ours) w/o Distribution 
Matching w/o GAN w/o Backward 

Simulation

A soft beam of light shines down on an armored granite wombat warrior statue holding a 
broad sword. The statue stands an ornate pedestal in the cella of a temple. wide-angle lens. 
anime oil painting.

Cinematic photo of a beautiful girl riding a dinosaur in a jungle with mud, sunny day shiny 
clear sky. 35mm photograph, film, professional, 4k, highly detailed.

A close-up of a woman’s face, lit by the soft glow of a neon sign in a dimly lit, retro diner, 
hinting at a narrative of longing and nostalgia.

a teddy bear on a skateboard in times square

a girl examining an ammonite fossil

Figure 7: SDXL Qualitative Ablations. All images are generated using identical noise and text
prompts. Removing the distribution matching objective significantly degrades aesthetic quality and
text alignment. Omitting the GAN loss results in oversaturated and overly smoothed images. The
baseline without backward simulation produces images of lower quality.
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our efficient approach and optimized, user-friendly codebase will help democratize future research in
this field.

7 Broader Impact

Our work on improving the efficiency and quality of diffusion model has several potential societal
impacts, both positive and negative. On the positive side, the advancements in fast image synthesis
can significantly benefit various creative industries. These models can enhance graphic design,
animation, and digital art by providing artists with powerful tools to generate high-quality visuals
efficiently. Additionally, improved text-to-image synthesis capabilities can be used in education and
entertainment, enabling the creation of personalized learning materials and immersive experiences.

However, potential negative societal impacts must be considered. Misuse risks include generating
misinformation and creating fake profiles, which could spread false information and manipulate public
opinion. Deploying these technologies could result in biases that unfairly impact specific groups,
especially if models are trained on biased datasets, potentially perpetuating or amplifying existing
societal biases. To mitigate these risks, we are interested in developing monitoring mechanisms to
detect and prevent misuse [74, 75] and methods to enhance output diversity and fairness [76].
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A SD v1.5 Results

Table 5 presents detailed comparisons between our one-step generator distilled from SD v1.5 and
competing approaches.

B Text-to-Image Synthesis Further Analysis

Qualitative ablation results using SDXL backbone are shown in Figure 7. Additionally, we compare
the image diversity of our 4-step generator with other competing approaches distilled from SDXL [23,
27, 31]. We employ an LPIPS-based diversity score, similar to that used in multi-modal image-to-
image translation [84,85]. Specifically, we generate four images per prompt and calculate the average
pairwise LPIPS distance [53]. For this evaluation, we use the LADD [24] subset of PartiPrompts [69].
We also report the FID and CLIP score measured on 10K prompts from COCO 2014 on the side.
Table 6 summarizes the results. Our model achieves the best image quality, indicated by the lowest
FID and Patch FID scores. We also achieve text alignment comparable to SDXL-Turbo while
attaining a better diversity score. While SDXL-Lightning [27] exhibits a higher diversity score than
our approach, it suffers from considerably worse text alignment, as reflected by the lower CLIP score
and human evaluation (Fig. 5). This suggests that the improved diversity is partially due to random
outputs lacking prompt coherence. We note that it is possible to increase the diversity of our model by
raising the weights for the GAN objective, which aligns with the more diverse unguided distribution.
Further investigation into finding the optimal balance between distribution matching and the GAN
objective is left for future work.
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Table 5: Sample quality comparison on 30K prompts from COCO 2014.

Family Method Resolution (↑) Latency (↓) FID (↓)

Original,
unaccelerated

DALL·E [77] 256 - 27.5
DALL·E 2 [3] 256 - 10.39
Parti-750M [69] 256 - 10.71
Parti-3B [69] 256 6.4s 8.10
Make-A-Scene [78] 256 25.0s 11.84
GLIDE [79] 256 15.0s 12.24
LDM [1] 256 3.7s 12.63
Imagen [4] 256 9.1s 7.27
eDiff-I [5] 256 32.0s 6.95

GANs
LAFITE [80] 256 0.02s 26.94
StyleGAN-T [81] 512 0.10s 13.90
GigaGAN [71] 512 0.13s 9.09

Accelerated
diffusion

DPM++ (4 step) [50] 512 0.26s 22.36
UniPC (4 step) [82] 512 0.26s 19.57
LCM-LoRA (4 step) [32] 512 0.19s 23.62
InstaFlow-0.9B [11] 512 0.09s 13.10
SwiftBrush [45] 512 0.09s 16.67
HiPA [83] 512 0.09s 13.91
UFOGen [25] 512 0.09s 12.78
SLAM (4 step) [18] 512 0.19s 10.06
DMD [22] 512 0.09s 11.49
DMD2 (Ours) 512 0.09s 8.35

Teacher SDv1.5 (50 step, cfg=3, ODE) [1, 49] 512 2.59s 8.59
SDv1.5 (200 step, cfg=2, SDE) [1, 46] 512 10.25s 7.21

Table 6: Image quality and diversity comparison with SDXL backbone.

Method # Fwd
Pass (↓)

FID
(↓)

Patch
FID (↓)

CLIP
(↑)

Diversity
Score (↑)

LCM-SDXL [32] 4 22.16 33.92 0.317 0.61
SDXL-Turbo [23] 4 23.19 23.27 0.334 0.58
SDXL-Lightning [27] 4 24.46 24.56 0.323 0.63
DMD2 (Ours) 4 19.32 20.86 0.332 0.61

SDXL-Teacher, cfg=6 [57] 100 19.36 21.38 0.332 0.64
SDXL-Teacher, cfg=8 [57] 100 20.39 23.21 0.335 0.64

C Two Time-scale Update Rule Further Analysis

In Section 4.2, we discuss that updating the fake score multiple times (5 updates) per generator
update leads to better stability. Here, we provide further analysis. Figure 8 visualizes pixel brightness
variations throughout training. The baseline approach, which omits the regression objective from
DMD and uses just 1 fake score update, results in significant training instability, as evidenced by
periodic fluctuations in pixel brightness. In contrast, our two time-scale update rule with 5 fake score
updates per generator update stabilizes the training and leads to better sample quality, as shown in
Tab. 3.

We further examine the influence of the update frequency for the fake diffusion model µfake in
Figure 9. An update frequency of 1 fake diffusion update per generator update corresponds to
the naive baseline (red line) and suffers from training instability. Although a frequency of 10
updates (magenta line) provides excellent stability, it significantly slows down the training process.
We found that a moderate frequency of 5 updates (green line) achieves the best balance between
stability and convergence speed on ImageNet. Our approach proves more effective than using
asynchronous learning rates [59] (cyan line) and converges significantly faster than the original
DMD method that employs a regression loss [22] (dark blue line). For new models and datasets, we
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recommend adjusting the iteration number to the smallest value that ensures the stability of general
image statistics, such as pixel brightness.

Figure 8: Visualization of pixel brightness variations throughout training. The baseline approach,
which naively removes the regression loss from the original DMD [22], suffers from significant
training instability, leading to fluctuating general image statistics like the overall pixel brightness.
In contrast, our two time-scale update rule, which optimizes the fake diffusion model five times per
generator update, significantly stabilizes training and enhances sample quality.

Figure 9: Visualization of FID score progression during training. Naively removing the regression
loss leads to training instability (red line). A two time-scale update rule with five fake diffusion critic
updates per generator update stabilizes training and is more effective than using a larger number
of fake diffusion updates or an asynchronous learning rate where the fake diffusion model uses a
learning rate 5 times larger than the generator. The model trained with our two time-scale update rule
(green) also converges significantly faster than the original DMD method with a regression loss (dark
blue), even though TTUR performs less number of the generator weight updates.
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D Additional Text-to-Image Synthesis Results

Additional visual comparisons for the 4-step distilled models are shown in Figure 10. Sample outputs
from our one-step generator are presented in Figure 11.

DMD2 (Ours) LCM

A bald eagle made of chocolate powder, mango, and whipped cream

Turbo Lightning Teacher

a pumpkin on a man's head

A punk rock squirrel in a studded leather jacket shouting into a microphone while standing on a boulder

a cat reading a newspaper

an orange wearing a cowboy hat

Figure 10: Additional visual comparison between our model, the SDXL teacher, and selected
competing methods [23, 27, 31]. All distilled models use 4 sampling steps while the teacher model
uses 50 sampling steps with classifier-free guidance. All images are generated using identical noise
and text prompts. Our model produces images with superior realism and text alignment. Please zoom
in for details.
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Figure 11: Additional 1024×1024 samples produced by our 1-step generator distilled from SDXL.
Please zoom in for details.

21



E ImageNet Visual Results

In Figure 12, we present qualitative results obtained from our one-step distilled model trained on the
ImageNet dataset.

Figure 12: One-step samples from our generator trained on ImageNet (FID=1.28). Please zoom in
for details.

22



F Implementation Details

This section provides a brief overview of the implementation details. All results presented can be
easily reproduced using our open-source training and evaluation code.

F.1 GAN Classifier Design

Our GAN classifier design is inspired by SDXL-Lightning [27]. Specifically, we attach a prediction
head to the middle block output of the fake diffusion model. The prediction head consists of a stack
of 4× 4 convolutions with a stride of 2, group normalization, and SiLU activations. All feature maps
are downsampled to 4× 4 resolution, followed by a single convolutional layer with a kernel size and
stride of 4. This layer pools the feature maps into a single vector, which is then passed to a linear
projection layer to predict the classification result.

F.2 ImageNet

Our ImageNet implementation closely follows the DMD paper [22]. Specifically, we distill a one-step
generator from the EDM pretrained model [52], released under the CC BY-NC-SA 4.0 License. For
the standard training setup, we use the AdamW optimizer [86] with a learning rate of 2× 10−6, a
weight decay of 0.01, and beta parameters (0.9, 0.999). We use a batch size of 280 and train the
model on 7 A100 GPUs for 200K iterations, which takes approximately 2 days. The number of
fake diffusion model update per generator update is set to 5. The weight for the GAN loss is set to
3× 10−3. For the extended training setup shown in Table 1, we first pretrain the model without GAN
loss for 400K iterations. We then resume from the best checkpoint (as measured by FID), enable the
GAN loss with a weight of 3× 10−3, reduce the learning rate to 5× 10−7, and continue training for
an additional 150K iterations. The total training time for this run is approximately 5 days.

F.3 SD v1.5

We distill a one-step generator from the SD v1.5 model [1], released under the CreativeML Open
RAIL-M license, using prompts from the LAION-Aesthetic 6.25+ dataset [58]. Additionally, we
collect 500K images from LAION-Aesthetic 5.5+ as training data for the GAN discriminator, filtering
out images smaller than 1024 × 1024 and those containing unsafe content. Our training process
involves two stages. In the first stage, we disable the GAN loss and use the AdamW optimizer with
a learning rate of 1× 10−5, a weight decay of 0.01, and beta parameters of (0.9, 0.999). The fake
diffusion model is updated 10 times per generator update. We set the guidance scale for the real
diffusion model to be 1.75. We use a batch size of 2048 and train the model on 64 A100 GPUs
for 40K iterations. In the second stage, we enable the GAN loss with a weight of 10−3, reduce the
learning rate to 5× 10−7, and continue training for an additional 5K iterations. The total training
time is approximately 26 hours.

F.4 SDXL

We train both one-step and four-step generators by distilling from the SDXL model [57], released
under the CreativeML Open RAIL++-M License. For the one-step generator, we observed similar
block noise artifacts as reported in SDXL-Lightning [27] and Pixart-Sigma [87]. We addressed this
by adopting the timestep shift technique from OpenDMD [88] and Pixart-Sigma [87], setting the
conditioning timestep to 399. Additionally, we initialized the one-step generator by pretraining it
with a regression loss using a small set of 10K pairs for a short period. These adjustments are not
necessary for the multi-step model or other backbones, suggesting this issue might be specific to
SDXL. Similar to SD v1.5, we use prompts from the LAION-Aesthetic 6.25+ dataset [58] and collect
500K images from LAION-Aesthetic 5.5+ as training data for the GAN discriminator, filtering out
images smaller than 1024× 1024 and those containing unsafe content. The generator is trained using
the AdamW optimizer with a learning rate of 5× 10−7, a weight decay of 0.01, and beta parameters
of (0.9, 0.999). The fake diffusion model is updated 5 times per generator update. We set the guidance
scale for the real diffusion model to be 8. We use a batch size of 128 and train the model on 64 A100
GPUs for 20K iterations for the 4-step generator and 25K iterations for the 1-step generator, taking
approximately 60 hours.
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G Evaluation Details

For the COCO experiments, we follow the exact evaluation setup as GigaGAN [71] and DMD [22].
For the results presented in Table 5, we use 30K prompts from the COCO 2014 validation set and
generate the corresponding images. The outputs are downsampled to 256×256 and compared with
40,504 real images from the same validation set using clean-FID [89]. For the results presented
in Table 2, we use a random set of 10K prompts from the COCO 2014 validation set and generate
the corresponding images. The outputs are downsampled to 512×512 and compared with the
corresponding 10K real images from the validation set with the same prompts. We compute the CLIP
score using the OpenCLIP-G backbone. For the ImageNet results, we generate 50,000 images and
calculate the FID statistics using EDM’s evaluation code [52].

H User Study Details

To conduct the human preference study, we use the Prolific platform (https://www.prolific.com).
We use 128 prompts from the LADD [24] subset of PartiPrompts [69]. All approaches generate
corresponding images, which are presented in pairs to human evaluators to measure aesthetic and
prompt alignment preference. The specific questions and interface are shown in Figure 13. Consent
is obtained from the voluntary participants, who are compensated at a flat rate of 12 dollars per hour.
We manually verify that all generated images contain standard visual content that poses no risks to
the study participants.

Figure 13: A sample interface for our user preference study, where images are presented in a random
left/right order.
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I Prompts for Figure 1, Figure 2, and Figure 11

We use the following prompts for Figure 1. From left to right, top to bottom:

• a girl examining an ammonite fossil
• A photo of an astronaut riding a horse in the forest.
• a giant gorilla at the top of the Empire State Building
• A close-up photo of a wombat wearing a red backpack and raising both arms in the air.

Mount Rushmore is in the background.
• An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as

in the original.
• a portrait of an old man
• a watermelon chair
• A sloth in a go kart on a race track. The sloth is holding a banana in one hand. There is a

banana peel on the track in the background.
• a penguin standing on a sidewalk
• a teddy bear on a skateboard in times square

We use the following prompts for Figure 2. From left to right, top to bottom:

• a chimpanzee sitting on a wooden bench
• a cat reading a newspaper
• A television made of water that displays an image of a cityscape at night.
• a portrait of a statue of the Egyptian god Anubis wearing aviator goggles, white t-shirt and

leather jacket. The city of Los Angeles is in the background.
• a squirrell driving a toy car
• an elephant walking on the Great Wall
• a capybara made of voxels sitting in a field
• Cinematic photo of a beautiful girl riding a dinosaur in a jungle with mud, sunny day shiny

clear sky. 35mm photograph, film, professional, 4k, highly detailed.
• A still image of a humanoid cat posing with a hat and jacket in a bar.
• A soft beam of light shines down on an armored granite wombat warrior statue holding a

broad sword. The statue stands an ornate pedestal in the cella of a temple. wide-angle lens.
anime oil painting.

• children
• A photograph of the inside of a subway train. There are red pandas sitting on the seats. One

of them is reading a newspaper. The window shows the jungle in the background.
• a goat wearing headphones
• motion
• A close-up of a woman’s face, lit by the soft glow of a neon sign in a dimly lit, retro diner,

hinting at a narrative of longing and nostalgia.

We use the following prompts for Figure 11. From left to right, top to bottom:

• A close-up of a woman’s face, lit by the soft glow of a neon sign in a dimly lit, retro diner,
hinting at a narrative of longing and nostalgia.

• a cat reading a newspaper
• A television made of water that displays an image of a cityscape at night.
• a portrait of a statue of the Egyptian god Anubis wearing aviator goggles, white t-shirt and

leather jacket. The city of Los Angeles is in the background.
• a squirrell driving a toy car
• an elephant walking on the Great Wall
• a capybara made of voxels sitting in a field
• A soft beam of light shines down on an armored granite wombat warrior statue holding a

broad sword. The statue stands an ornate pedestal in the cella of a temple. wide-angle lens.
anime oil painting.

• a goat wearing headphones
• An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as

in the original.
• a girl examining an ammonite fossil
• a chimpanzee sitting on a wooden bench
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• children
• A still image of a humanoid cat posing with a hat and jacket in a bar.
• motion
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